277 research outputs found

    Phylogeny, Diet, and Cranial Integration in Australodelphian Marsupials

    Get PDF
    Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed studies have also demonstrated a significant correlation between developmental relationships among structures and adult morphological integration. However, these studies have not yet been applied to marsupial taxa, which differ greatly from placentals in reproductive strategy and cranial development and could provide the diversity necessary to assess the relationships among phylogeny, ecology, development, and cranial integration. This study presents analyses of morphological integration in 20 species of australodelphian marsupials, and shows that phylogeny is significantly correlated with similarity of morphological integration in most clades. Size-related correlations have a significant affect on results, particularly in Peramelia, which shows a striking decrease in similarity of integration among species when size is removed. Diet is not significantly correlated with similarity of integration in any marsupial clade. These results show that marsupials differ markedly from placental mammals in the relationships of cranial integration, phylogeny, and diet, which may be related to the accelerated development of the masticatory apparatus in marsupials

    Chemical signals act as the main reproductive barrier between sister and mimetic Heliconius butterflies.

    Get PDF
    Colour pattern is the main trait that drives mate recognition between Heliconius species that are phylogenetically close. However, when this cue is compromised such as in cases of mimetic, sympatric and closely related species, alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species Heliconius melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. In order to test which cues differ between species, and potentially contribute to reproductive isolation, we quantified differences in the wing phenotype and the male chemical profile. As expected, the wing colour pattern was indistinguishable between the two species, while the chemical profile of the androconial and genital males' extracts showed marked differences. We then conducted behavioural experiments to study the importance of these signals in mate recognition by females. In agreement with our previous results, we found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic component for both chemical production and preference. Altogether, these results suggest that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species

    Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)

    Get PDF
    Background: Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results: The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their postsettlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion: Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide range of feeding habits, promotes increasing shape disparity of the head skeleton over the ontogeny of fishes

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    Intra and Inter-Population Morphological Variation of Shape and Size of the Chilean Magnificent Beetle, Ceroglossus chilensis in the Baker River Basin, Chilean Patagonia

    Get PDF
    The alteration of habitat generates different degrees of stress in insects. It has been suggested that the degrees of phenotypic disturbances reflect the ability of an individual to overcome the effects of stress. The Baker River Basin in the Aysén Region, Chilean Patagonia has a very fragmented landscape, due to the destruction of the native forest and the use of land for agriculture and animal husbandry. This alteration should generate different degrees of disturbances in the insect communities, whose effects may be quantified by geometric morphometric tools. We analyzed morphological differences in 244 males and 133 females of the the Chilean magnificent beetle, Ceroglossus chilensis (Eschscholtz) (Coleoptera: Carabidae) collected in January, 2007, in mixed forests of Nothofagus dombeyi Mirbel (Ørsted) (Fagales: Nothofagaceae) and N. nitida Hofmus and in Second-growth forest of N. pumilio (Poepp. & Endl.) Krasser. Males were generally wider in the pronotum, while females had wider abdominal sternites. Although there were significant differences in shape and size between mature forests and second-growth forest, these were less significant among the sites within each type of vegetal formation. Individuals had more shape variations in the mature forest. We suggest that differences in shape are due at least in part to the isolation of the habitat. The differences found between sexes raises the question of how morphological variations and sexual dimorphism may be affected spatially by natural selection

    Re-Evaluation of Sinocastor (Rodentia: Castoridae) with Implications on the Origin of Modern Beavers

    Get PDF
    The extant beaver, Castor, has played an important role shaping landscapes and ecosystems in Eurasia and North America, yet the origins and early evolution of this lineage remain poorly understood. Here we use a geometric morphometric approach to help re-evaluate the phylogenetic affinities of a fossil skull from the Late Miocene of China. This specimen was originally considered Sinocastor, and later transferred to Castor. The aim of this study was to determine whether this form is an early member of Castor, or if it represents a lineage outside of Castor. The specimen was compared to 38 specimens of modern Castor (both C. canadensis and C. fiber) as well as fossil specimens of C. fiber (Pleistocene), C. californicus (Pliocene) and the early castorids Steneofiber eseri (early Miocene). The results show that the specimen falls outside the Castor morphospace and that compared to Castor, Sinocastor possesses a: 1) narrower post-orbital constriction, 2) anteroposteriorly shortened basioccipital depression, 3) shortened incisive foramen, 4) more posteriorly located palatine foramen, 5) longer rostrum, and 6) longer braincase. Also the specimen shows a much shallower basiocciptal depression than what is seen in living Castor, as well as prominently rooted molars. We conclude that Sinocastor is a valid genus. Given the prevalence of apparently primitive traits, Sinocastor might be a near relative of the lineage that gave rise to Castor, implying a possible Asiatic origin for Castor

    Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology

    Get PDF
    The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the air‐filled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedance‐matching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Oldest known pantherine skull and evolution of the tiger

    Get PDF
    The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species

    The Making of a Monster: Postnatal Ontogenetic Changes in Craniomandibular Shape in the Great Sabercat Smilodon

    Get PDF
    Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes than among extant felids, resulting in greatly modified adult craniomandibular morphologies
    corecore